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Abstract
Background: Neuroinflammation occurs following brain injury, including soman (GD) induced status epilepticus (SE), 
and may contribute to loss of neural tissue and declined behavioral function. However, little is known about this 
important pathological process following GD exposure. Limited transcriptional information on a small number of 
brain-expressed inflammatory mediators has been shown following GD-induced SE and even less information on 
protein upregulation has been elucidated. The purpose of this study is to further characterize the regional and 
temporal progression of the neuroinflammatory process following acute GD-induced SE.

Methods: The protein levels of 10 cytokines was quantified using bead multiplex immunoassays in damaged brain 
regions (i.e., piriform cortex, hippocampus and thalamus) up to 72 hours following seizure onset. Those factors 
showing significant changes were then localized to neural cells using fluorescent IHC.

Results: A significant concentration increase was observed in all injured brain regions for four acute phase response 
(APR) induction cytokines: interleukin (IL)-1α, IL-1β, IL-6, and tumor necrosis factor (TNF)-α. Increases in these APR 
cytokines corresponded both temporally and regionally to areas of known seizure damage and neuronal death. 
Neurotoxic cytokines IL-1α and IL-1β were primarily expressed by activated microglia whereas the potentially 
neuroprotective cytokine IL-6 was expressed by neurons and hypertrophic astrocytes.

Conclusions: Increases in neurotoxic cytokines likely play an active role in the progression of GD-induced SE 
neuropathology though the exact role that these and other cytokines play in this process require further study.

Background
Chemical warfare nerve agents (CWNA) were developed
during World War II but remain a significant threat
through deployment by hostile nations or by terrorist
organizations [1]. CWNA, such as soman (pinacolyl
methylphosphonofluoridate, GD), rapidly and irrevers-
ibly bind to acetylcholinesterase, causing excess acetyl-
choline accumulation in the central and peripheral
nervous systems. GD exposure can cause intense tonic-
clonic convulsions, respiratory paralysis and possibly
death [2]. Following exposure, the ensuing cholinergic
crisis leads to the development of status epilepticus (SE)
that can continue unabated for many hours [3]. SE
induces neuroinflammatory gliosis [4] and profound neu-

ronal cell loss in the piriform cortex, hippocampus,
amygdala and thalamus [5,6]. Excitotoxic neural damage
following GD exposure activates a neuroinflammatory
response [7-10], which may contribute to the neuropa-
thology.

The extent to which neuroinflammation contributes to
cell loss following central nervous system (CNS) injury
largely depends on many factors, such as local environ-
ment, concentration of the inflammatory mediators, the
responding immune cell phenotype and the timing of
their interaction with damaged neural cells [11,12]. In
severe and progressive CNS injuries, increased neuroin-
flammatory activity appears detrimental since anti-
inflammatory treatments are successful in reducing brain
pathology in animal models of CNS injury [13,14]. Fol-
lowing injury, infiltrating leukocytes and activated mac-
rophages release many inflammatory proteins, including
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the acute phase response (APR) inducing cytokines IL-1,
IL-6 and TNF-α [15]. Though pluripotent, cytokines such
as IL-1 (α and β) and TNF-α are toxic to neural tissues in
vitro [16-18] and can exacerbate experimental CNS injury
in vivo [19-21].

Evidence of neuroinflammation following GD-induced
SE has been shown at the level of gene transcription [7-
10], though data are limited on protein upregulation
[22,23]. Therefore, the purpose of this study was to inves-
tigate the extent and maturation of the neuroinflamma-
tory response by examining cytokine protein increases
following GD exposure up to 72 hours after SE onset.
Protein levels of ten cytokines were quantified using a
multiplex bead immunoassay in brain tissue lysates of SE-
injury susceptible regions (i.e., piriform cortex, thalamus
and hippocampus). APR cytokines were markedly ele-
vated in vulnerable brain regions and were localized to
resident neural cells (i.e., neurons, astrocytes or micro-
glia). These data are the first to show concurrent cytokine
protein upregulation and cellular origin of these factors
following GD-induced SE.

Methods
Animals
Adult male Sprague-Dawley rats (Charles River Labora-
tories, Wilmington, MA; CRL: CD[SD]-BR, 250 - 350 g)
were treated with HI-6 dichloride (Walter Reed Army
Institute of Research, Silver Spring, MD; 125 mg/kg, i.p.)
30 minutes prior to GD administration and with atropine
methyl nitrate (AMN, Sigma-Aldrich, St. Louis, MO; 2.0
mg/kg, i.m.) 1 minute after GD administration. Vehicle
control animals received HI-6, AMN and saline, while
naïve animals received no injections. GD (GD-U-2323-
CTF-N, purity 98.8 wt%) was diluted in saline at USAM-
RICD. GD (1.6 LD50 = 180 μg/kg) was administered sub-
cutaneously in the scruff of the neck and the rat was
observed for convulsive activity. This dose of GD pro-
duces within minutes [24] a 100% generalized convulsive
seizure rate that is maintained up to 24 hours [3]. The
experimental protocol was approved by the Animal Care
and Use Committee at the United States Army Medical
Research Institute of Chemical Defense and all proce-
dures were conducted in accordance with the principles
stated in the Guide for the Care and Use of Laboratory
Animals (National Research Council, 1996), and the Ani-
mal Welfare Act of 1966 (P.L. 89-544), as amended. The
animal care program at this institute is fully accredited by
the Association for Assessment and Accreditation of Lab-
oratory Animal Care International.

Multiplex bead array immunoassay
Experimental, vehicle control and naïve animals were
deeply anesthetized with a sodium pentobarbital solution
(70 mg/kg, i.p.) then euthanized by decapitation at 0.5, 1,

3, 6, 12, 24, 48 or 72 hours after onset of convulsions. Fol-
lowing euthanasia, piriform cortex, hippocampus and
thalamus tissue was extracted and processed into lysate
as previously described [25]. Briefly, the brain regions
were excised, rinsed with cold PBS and snap frozen in liq-
uid nitrogen. The tissues were weighed and homogenized
in ice-cold triple detergent lysis buffer containing a Com-
plete™ protease inhibitor cocktail (Roche Biochemicals,
Indianapolis, IN) at a ratio of 1 ml buffer to 50 mg tissue.
Samples were allowed to stand at 4°C for at least 30 min-
utes before centrifugation at 8000 G for 5 minutes and
removal of the lysate for assaying. Cytokine concentra-
tions were quantified using a rat cytokine multiplex bead
immunoassay kit containing IL-1α, IL-1β, IL-2, IL-4, IL-6,
IL-10, IL-12p70, IL-13, IL-17, and TNF-α (LINCO
Research, St. Charles, MO). The bead immunoassay pro-
cedure used 25 μl of sample (94 ± 8 μg protein) per well
and was conducted according to the manufacturer's
instructions with each individual cytokine standard curve
and sample assayed in duplicate. The plate was read on a
Luminex™ 100 instrument (Bio-Rad Laboratories, Hercu-
les, CA) and analyzed with either BioRad or STaRStation
software (Applied Cytometry, Sacramento, CA). The
number of replicates for the experimental samples are as
follows: piriform cortex, n = 6 for each time point and
naïve; hippocampus, n = 6 for each time point except for
naïve (n = 5), 6 hr (n = 5) and 24 hr (n = 7); thalamus, n =
5 for each time point and naïve except for 0.5 hr (n = 6), 6
hr (n = 4), 12 hr (n = 3), 24 hr (n = 6) and 48 hr (n = 6).
Time matched vehicle controls (n = 3 per time point)
were analyzed individually and condensed into a single
vehicle control comparison group when no significant
difference was found between these samples over time by
analyte or brain region.

Immunohistochemistry (IHC)
Separate from the animals used in the multiplex bead
array immunoassay, experimental, vehicle control and
naïve animals were deeply anesthetized, euthanized by
decapitation at 12 hours after seizure onset and perfused
with isotonic saline followed by 4% paraformaldehyde via
cardiac puncture. Brains were immediately frozen at -
20°C, cut on a Leica CM3050 S cryostat (Thermo Shan-
don, Inc.; Pittsburgh, PA) at 40 microns and stored in
cryobuffer (30% each of glycerol, ethylene glycol and
water, 10% 2 × phosphate buffer) until use. Free float fluo-
rescent IHC labeling was conducted as previously
described [25]. Experimental and vehicle control samples
had an n = 3 for each cytokine/cell type combination. The
antibodies used were as follows: rabbit anti-IL-1α
(1:1000; ab9875, Abcam, Cambridge, MA), rabbit anti-IL-
1β (1:1000; ab9787, Abcam), rabbit anti-IL-6 (1:500;
ab6672, Abcam), mouse anti-NeuN to label neurons
(1:1000; MAB377, Chemicon, Temecula, CA), mouse
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anti-GFAP to label astrocytes (1:1000; MS-280-P, Neo-
Markers, Fremont, CA), and mouse anti-cd11b to label
microglia and macrophages (1:1000; CBL1512, Chemi-
con). Alexafluor™ fluorescent-tagged secondary and ter-
tiary antibodies (Molecular Probes, Eugene, OR) were
used for visualization. Tissue sections labeled with only
secondary and tertiary antibodies were used as secondary
controls. Sections were viewed and digitally captured
with an Olympus BX51 microscope equipped with an
Olympus DP-70 high-resolution color CCD digital cam-
era (Opelco, Dulles, VA). An Olympus BX61 equipped
with a DSU spinning disk confocal system and DP-70
CCD camera was used to confirm same cell co-localiza-
tion (Opelco). Images of 40 μm tissues were acquired
using a z step interval of 1 μm and analyzed using Slide-
book™ software (Opelco). Publication images were com-
piled using Adobe Photoshop CS digital image software.
Color levels and background labeling were reduced and
evened using the levels tool. All input levels (0-255) were
normalized in the RGB channel as follows: highlight
input levels were set at the peak of the image histogram,
midtone levels were set at 0.8 and shadow levels were set
either at the edge of the histogram closest to 255 or at
180, whichever was greater.

Statistical analysis
Immunoassay data were evaluated by ANOVA with a
post-hoc Dunnett's analysis and expressed in pg/ml. Data
points calculated below the minimum detectible concen-
trations (MinDC) for the assays were conservatively set at
-0.01 pg/ml of the MinDC for statistical analyses. Values
are expressed as mean ± SEM. Differences were consid-
ered significant at the level of p ≤ 0.05.

Results
APR cytokines significantly increase following GD induced 
SE
Of the ten inflammatory cytokines investigated, concen-
trations of four significantly increased: IL-1α, IL-1β, IL-6,
and TNF-α as shown in Figures 1-4. No significant
changes were observed for IL-2, IL-4, IL-10, IL-12p70, IL-
13 or IL-17 during the time course (data not shown).
Concentrations of IL-1α significantly increased at 12
hours after SE onset in the piriform cortex (205 ± 99 pg/
ml v. 14 ± 7 pg/ml vehicle control), hippocampus (234 ±
29 pg/ml v. 34 ± 29 pg/ml vehicle control) and thalamus
(303 ± 213 pg/ml v. 45 ± 13 pg/ml vehicle control)(Figure
1). IL-1β significantly increased in the piriform cortex at
12 hours (41 ± 10 pg/ml v. 16 ± 10 pg/ml vehicle control)
and in the thalamus at 12 hours (48 ± 28 pg/ml) and 24
hours (24 ± 12 pg/ml v. 5 ± 1 pg/ml vehicle control) (Fig-
ure 2). No significant changes in IL-1β concentration
were observed in the hippocampus though a definite
trend was observed, with an approximate 3-fold increase

over vehicle control values. Significant IL-6 concentra-
tion increases were observed in all brain regions at 12 and
24 hours (Figure 3) though peak expression varied by
region. In the piriform cortex, IL-6 concentrations signif-
icantly increased at 12 hours (2399 ± 1238 pg/ml) and
peaked at 24 hours (3200 ± 894 pg/ml) compared to vehi-
cle control (38 ± 8 pg/ml). Peak levels in the hippocampus
were observed at 12 hours (2462 ± 1489 pg/ml) with a
small decrease at 24 hours (2386 ± 814 pg/ml v. 99 ± 48
pg/ml vehicle control) with the true peak likely occurring
between these time points. In the thalamus, IL-6 peaks at
12 hours (2706 ± 913 pg/ml) though concentration

Figure 1 IL-1α significantly increases in rat brain after GD-in-
duced SE. IL-1α concentrations significantly increase in the hippocam-
pus, piriform cortex and thalamus 12 hours following GD-induced 
seizure activity. Concentrations of IL-1α peak at 12 hours in the piriform 
cortex (solid gray line), hippocampus (solid black line) and thalamus 
(open gray line). ## p < 0.01 versus vehicle control in hippocampus, ** 
p < 0.01 versus vehicle control in piriform cortex, $$ p < 0.01 versus ve-
hicle control in thalamus.

Figure 2 IL-1β significantly increases in rat brain after GD-in-
duced SE. Though much less robust than IL-1α, IL-1β concentrations 
significantly increase in the piriform cortex twelve hours following GD-
induced seizure activity (solid gray line). Concentrations of IL-1β also 
significantly increase in the thalamus (open gray line) though not in 
the hippocampus (solid black line). Also unlike IL-1α, IL-1β concentra-
tions in naives were high and variable compared to experimental data. 
* p < 0.05 versus vehicle control in piriform cortex, $$ p < 0.01 versus ve-
hicle control in thalamus.
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increases are still significant at 24 hours (1711 ± 909 pg/
ml) compared to vehicle control (13 ± 13 pg/ml). Lastly,
TNF-α significantly increased in the piriform cortex at 6
(20 ± 7 pg/ml) and 12 hours (32 ± 15 pg/ml v. 4.43 ± 0.0
pg/ml [below MinDC]), in the hippocampus at 6 (27 ± 7
pg/ml) and 12 hours (37 ± 10 pg/ml v. 13 ± 3 pg/ml vehi-
cle control) and in the thalamus at 12 hours (61 ± 31 pg/
ml v. 6 ± 3 pg/ml vehicle control) (Figure 4). Naïve and
vehicle controls were not significantly different from each
other for any factor measured in any region. To further
identify the source of these cytokines, neurons, astro-
cytes and microglia expressing IL-1α, IL-1β and IL-6

were identified in each brain region using IHC at the 12-
hour time point, the peak of cytokine expression for the
majority of these brain regions. Localization of TNF-α
was not pursued due to a lack of effective IHC antibodies.

IL-1 is expressed by microglia following GD induced SE
The cytokines IL-1α (Figure 5) and β (Figure 6) (collec-
tively IL-1) are functionally similar and likewise have sim-
ilar labeling patterns in the piriform cortex (Figure 5A
and 6A, left), hippocampus (dentate gyrus shown; Figure
5B and 6B, left) and thalamus (lateral posterior region
shown; Figure 5C and 6C, left). Labeling was absent in
vehicle (Figure 5 and 6A, B, &6C right) and secondary
controls (not shown). In the piriform cortex, IL-1 positive
cells were located in all 3 layers with IL-1α found pre-
dominantly in layer I and IL-1β found in layer II. In the
hippocampus, IL-1 positive cells were found primarily in
the polymorphic layer of the dentate gyrus (PoDG) and
the CA3 pyramidal layer closest to the dentate gyrus. IL-1
positive cells were also found in the laterodorsal and lat-
eral posterior nuclei of the thalamus. To identify these
cells, sections were co-labeled with antibodies specific for
neurons, astrocytes or microglia and for IL-1α or β. Posi-
tive immunoreactivity for IL-1 was absent in both neu-
rons (Figure 5 and 6D) and astrocytes (Figure 5 and 6E).
However, strong and abundant expression of IL-1α and β
was observed in many activated microglia (Figure 5F). IL-
1β, but not IL-1α, also appeared in morphologically iden-
tified dystrophic microglia (Figure 6F, white arrow). Cel-
lular expression of IL-1 was the same regardless of the
brain region investigated.

IL-6 is expressed by neurons and astrocytes following GD 
induced SE
IL-6 immunolabeling was present in the piriform cortex
(Figure 7A, left), hippocampus (dentate gyrus shown; Fig-
ure 7B, left) and thalamus (Figure 7C, left). IL-6 labeling
was mostly absent in vehicle controls (Figure 7A, B, &7C
right), though light diffuse immunoreactivity in a limited
number of piriform cortex and thalamus neurons was
occasionally observed. Cellular expression of IL-6 was the
same regardless of the brain region investigated. IL-6
labeling was moderate to strong, with both a diffuse and
punctate distribution in neuronal cell bodies (Figure 7D).
IL-6 positive neurons were localized primarily in layers II
and III of the piriform cortex, the pyramidal and extrapy-
ramidal regions of the hippocampus and many of the
thalamic nuclei. Diffuse labeling of IL-6 was also present
in activated astrocytes (Figure 7E) but often sparse and
less intense than in neurons. Though co-localization was
infrequent, IL-6 was often found coincident with astro-
cytes around the vasculature in all studied brain regions.
No co-localization was observed between IL-6 and
microglia (Figure 7F). To confirm that the cellular origin

Figure 3 IL-6 significantly increases in rat brain after GD-induced 
SE. IL-6 concentrations significantly increase in the hippocampus, piri-
form cortex and thalamus 12 and 24 hours following GD-induced sei-
zure activity. Concentrations of IL-6 peak at 24 hours in the piriform 
cortex (solid gray line), and at 12 hours in the hippocampus (solid black 
line) and thalamus (open gray line). ## p < 0.01 versus vehicle control in 
hippocampus, ** p < 0.01 versus vehicle control in piriform cortex, $$ p 
< 0.01 versus vehicle control in thalamus.

Figure 4 TNF-α significantly increases in rat brain after GD-in-
duced SE. Concentrations of TNF-α peak at 12 hours in the piriform 
cortex (solid gray line), hippocampus (solid black line) and thalamus 
(open gray line). Significant increases were also seen in the hippocam-
pus and piriform cortex at 6 hours following GD-induced SE. # p < 0.05, 
## p < 0.01 versus vehicle control in hippocampus, ** p < 0.01 versus ve-
hicle control in piriform cortex, $$ p < 0.01 versus vehicle control in thal-
amus.
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of IL-6 did not change with time, 24 hour tissues were
also labeled with IL-6. No differences in cellular expres-
sion of this cytokine were observed between 12 and 24
hours (data not shown).

Discussion
Brain damage caused by CWNA induced seizure activity
can cause profound behavioral changes in animals [26,27]
and may lead to behavioral impairment and a reduced
quality of life for CWNA exposure survivors [28]. Neu-
roinflammation is common following many types of brain

injury, including seizure activity, and may exacerbate
brain pathology following GD-induced SE. Our current
understanding of the neuroinflammatory process follow-
ing GD exposure is limited to mRNA transcript [7-10]
and protein levels of a small number of factors [23]. Neu-
roinflammation has been associated with brain pathology
in many CNS injury models [29-31] since many inflam-
matory mediators are toxic to neural cells [16,20]. This
study reveals a strong induction of innate inflammatory
cytokines in brain regions vulnerable to GD-induced SE.

Figure 5 IL-1α is expressed in activated microglia following GD-induced SE. IL-1α (green) is present in the piriform cortex, hippocampus and 
thalamus 12 hours after GD-induced SE (A, B & C left), though absent in vehicle controls (A, B & C right). Neurons (D, red) and astrocytes (E, red) do not 
express IL-1α. Co-localization was observed in activated microglia (F, red). DAPI (A-F, blue) labels nuclei. For confocal images, the white lines indicate 
the vertical (Z) sectioning of the image and are shown as Z1 and Z2 on the edges of the main image. (Scale bar: 250 μm (A-C), 50 μm and 10 μm (D-F) 
for regular and confocal fluorescent microscopy respectively; n = 3 for each cytokine/cell type combination)
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Here, the regional and temporal protein concentration
changes of 10 cytokines were quantified following GD-
induced SE. We focused on three brain regions where
damage is robust following GD exposure, the piriform
cortex, hippocampus and thalamus [6,32]. The protein
concentrations of four APR cytokines (IL-1α, IL-1β, IL-6
and TNF-α) significantly increase and compare favorably
with previously reported mRNA data [7,9,10]. Transcript
work in a mouse model of GD exposure [7] revealed
results similar to those reported here for IL-1β and IL-6,

though TNF-α protein peaks in the rat model precede
their observed mRNA peaks in the mouse model by
approximately 12 hours. These discrepancies may be due
to differences in HI-6 pretreatment time (5 vs. 30 minutes
prior), HI-6 concentration (50 vs. 125 mg/kg), AMN
treatment (none vs. 1 minute) or species physiology
(mouse vs. rat). The closest comparison to this study
reported mRNA expression peaks in the piriform cortex
at 2 hours for TNF-α and 6 hours for IL-1β and IL-6,
between 10-18 hours before the protein peaks shown in

Figure 6 IL-1β is expressed in activated and dystrophic microglia following GD-induced SE. IL-1β (green) is present in the piriform cortex, hip-
pocampus and thalamus 12 hours after GD-induced SE (A, B & C; left), though absent in vehicle controls (A, B & C; right). IL-1β had a similar, though 
less robust, expression pattern compared to IL-1α. IL-1β did not co-localize with either neurons (D, red) or astrocytes (E, red). Co-localization was ob-
served in microglia (F, red), both activated and dystrophic (white arrow). DAPI (A-F, blue) labels nuclei. For confocal images, the white lines indicate 
the vertical (Z) sectioning of the image and are shown as Z1 and Z2 on the edges of the main image. (Scale bar: 250 μm (A-C), 50 μm and 10 μm (D-F) 
for regular and confocal fluorescent microscopy respectively; n = 3 for each cytokine/cell type combination.)
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this study [10]. In this case, transcription of the mRNA
predictably precedes translation of the protein. However,
they saw no significant increases in TNF-α or IL-6 mRNA
but did report a significant increase in IL-1β mRNA in
the hippocampus, contrary to the protein data reported
here. It is unknown why these differences occurred. How-
ever, a strong increasing trend is apparent in both the
mRNA (TNF-α and IL-6) and protein data (IL-1β) that is
consistent with the aforementioned transcription/trans-
lation pattern and could conceivably be resolved by more
data points.

Neurons, activated microglia, and astrocytes can pro-
duce neurotoxic cytokines in the brain following CNS
injury [33]. In this study, activated microglia produce
both IL-1α and β, whereas dystrophic microglia express
only IL-1β. Morphologically, dystrophic microglia display
characteristics that may include deramification, spheroid
formation, beading along the processes and cytorrhexis
[34]. It is well established that IL-1 expression by acti-
vated microglia can lead to tissue injury following CNS
damage [35,36], but little is known about dystrophic
microglia or why they might preferentially express one

Figure 7 IL-6 is expressed in neurons and astrocytes following GD-induced SE. IL-6 (green) is present in the piriform cortex, hippocampus and 
thalamus 12 hours after GD-induced SE (A, B & C; left), though absent in vehicle controls (A, B & C; right). IL-6 co-localized with neurons (D, red) and to 
a lesser extent, astrocytes (E, red). No co-localization was observed in microglia (F, red). DAPI (A-F, blue) labels nuclei. For confocal images, the white 
lines indicate the vertical (Z) sectioning of the image and are shown as Z1 and Z2 on the edges of the main image. (Scale bar: 250 μm (A-C), 50 μm and 
10 μm (D-F) for regular and confocal fluorescent microscopy respectively; n = 3 for each cytokine/cell type combination.)
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IL-1 isoform over the other. Dystrophic microglia only
appear in progressive neurodegenerative disease states
[34,37] and may be indicative of the rapid progression of
an acute pathological process in this model. Coupled with
the observation that IL-1β is the major form of IL-1 that
contributes to CNS damage following injury [38,39], IL-
1β expression by dystrophic microglia may represent yet
another signal by an injured cell to propagate the inflam-
matory cascade. Though unable to localize TNF-α to spe-
cific cells, expression of this pro-inflammatory cytokine
can also be detrimental to neural cells in the injury area.
TNF-α does not appear to be directly neurotoxic to neu-
rons, but expression as part of neuroinflammation greatly
exacerbates excitotoxic cell death in the presence of
excess glutamate [40], a condition that likely occurs fol-
lowing GD exposure [24]. Overall, expression of TNF-α,
IL-1α and IL-1β is neurotoxic, contributing to neuronal
cell death, edema and blood brain barrier failure follow-
ing CNS injury [18,41,42] and likely has a similar role fol-
lowing GD-induced SE.

IL-6 was expressed primarily by neurons and, to a lesser
extent, by hypertrophic astrocytes in this model. IL-6
expression occurs in both cell types [43-45] and can be
neuroprotective in vivo [45,46] and in vitro [43]. Since
neurons are particularly vulnerable to GD-induced SE
damage [6,47], expression of a factor that promotes neu-
ronal survival by inducing the expression of metallothio-
nein I + II and granulocyte-macrophage colony-
stimulating factor in macrophages [48], stimulates the
release of nerve growth factor from astrocytes [49] and
inhibits neutrophil infiltration [32] to counter neurotoxic
inflammatory factors such as IL-1is not surprising. Fur-
thermore, IL-6 expression begins the synthesis of corti-
cotrophin and glucocorticoids [50], initiating an anti-
inflammatory feedback loop. Expression of IL-6 predict-
ably follows early expression of IL-1α, IL-1β and TNFα.
Therefore, IL-6 expression by neurons and astrocytes
may be a neuroprotective mechanism initiated following
the neurotoxic expression of IL-1 in microglia.

Conclusion
This is the first study to show concurrent upregulation
and cellular origin of APR cytokines in the piriform cor-
tex, hippocampus and thalamus following GD-induced
seizure activity. The strong induction of IL-1α, IL-1β and
TNF-α suggests that a neurotoxic environment is created
in the brain in response to seizure activity may be coun-
tered by IL-6 expression.
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